Peer-Reviewed Journal Details
Mandatory Fields
Fang, Ping-Ping; Chen, Shu; Deng, Haiqiang; Scanlon, Micheál D.; Gumy, Frédéric; Lee, Hye Jin; Momotenko, Dmitry; Amstutz, Véronique; Cortés-Salazar, Fernando; Pereira, Carlos M.; Yang, Zhilin and Girault, Hubert H.
Acs Nano
Conductive gold nanoparticle mirrors at liquid/liquid interfaces
Optional Fields
Gold nanoparticles Liquid liquid interface Optical mirror Filter Reflectance
Gold nanoparticle (Au NP) mirrors, which exhibit both high reflectance and electrical conductance, were self-assembled at a [heptane + 1,2-dichloroethane]/water liquid/liquid interface. The highest reflectance, as observed experimentally and confirmed by finite difference time domain calculations, occurred for Au NP films consisting of 60 nm diameter NPs and approximate monolayer surface coverage. Scanning electrochemical microscopy approach curves over the interfacial metallic NP films revealed a transition from an insulating to a conducting electrical material on reaching a surface coverage at least equivalent to the formation of a single monolayer. Reflectance and conductance transitions were interpreted as critical junctures corresponding to a surface coverage that exceeded the percolation threshold of the Au NP films at the [heptane + 1,2-dichloroethane]/water interface. doi=10.1021/nn403879g
Grant Details