Peer-Reviewed Journal Details
Mandatory Fields
Grabrucker, A; Vaida, B; Bockmann, J; Boeckers, TM
2009
November
Cell And Tissue Research
Synaptogenesis of hippocampal neurons in primary cell culture
Published
()
Optional Fields
338
3
333
341

Hippocampal neurons in dissociated cell culture are one of the most extensively used model systems in the field of molecular and cellular neurobiology. Only limited data are however available on the normal time frame of synaptogenesis, synapse number and ultrastructure of excitatory synapses during early development in culture. Therefore, we analyzed the synaptic ultrastructure and morphology and the localization of presynaptic (Bassoon) and postsynaptic (ProSAP1/Shank2) marker proteins in cultures established from rat embryos at embryonic day 19, after 3, 7, 10, 14, and 21 days in culture. First excitatory synapses were identified at day 7 with a clearly defined postsynaptic density and presynaptically localized synaptic vesicles. Mature synapses on dendritic spines were seen from day 10 onward, and the number of synapses steeply increased in the third week. Fenestrated or multiple synapses were found after 14 or 21 days, respectively. So-called dense-core vesicles, responsible for the transport of proteins to the active zone of the presynaptic specialization, were seen on cultivation day 3 and 7 and could be detected in axons and especially in the presynaptic subcompartments. The expression and localization of the presynaptic protein Bassoon and of the postsynaptic molecule ProSAP1/Shank2 was found to correlate nicely with the ultrastructural results. This regular pattern of development and maturation of excitatory synapses in hippocampal culture starting from day 7 in culture should ease the comparison of synapse number and morphology of synaptic contacts in this widely used model system.

10.1007/s00441-009-0881-z
Grant Details