Other Publication Details
Mandatory Fields
Reviews
Wei, H,Pan, D,Zhang, SP,Li, ZP,Li, Q,Liu, N,Wang, WH,Xu, HX
2018
March
Plasmon Waveguiding in Nanowires
Published
1
()
Optional Fields
ENHANCED RAMAN-SCATTERING SINGLE-MOLECULE FLUORESCENCE PROPAGATING SURFACE-PLASMONS CRYSTALLINE AG NANOWIRES SILVER-NANOWIRE NEAR-FIELD QUANTUM DOTS POLARITON PROPAGATION METALLIC NANOWIRES ENERGY-TRANSFER
Nanowires supporting propagating surface plasmons can function as nanowaveguides to realize the light guiding with field confinement beyond the diffraction limit, providing fundamental building blocks for nanophotonic integrated circuits. This review covers the recent developments of plasmon waveguiding in nanowires, mainly including plasmon waveguiding in metal nanowires, coupling of nanowire plasmons and emitters, hybrid nanowire waveguides and plasmonic gain, and nanowire photonic devices. We first introduce the main techniques for fabricating metal nanowires, the plasmon modes in metal nanowires and the excitation/detection methods. We then discuss the fundamental properties of plasmon propagation and emission, including zigzag, chiral and spin-dependent propagation, mode conversion, loss and propagation length, group velocity, terminal emission, and leaky radiation. Then the interactions between nanowires and emitters are reviewed, especially the coupling of single nanowires and single quantum emitters. Finally, we briefly introduce the hybrid nanowire waveguide composed of a semiconductor nanowire and a metal film with an intervening thin insulator and highlight a few nanophotonic devices based on plasmonic nanowire networks or plasmonic-photonic hybrid nanowire structures.
2882
2926
10.1021/acs.chemrev.7b00441
Grant Details