Peer-Reviewed Journal Details
Mandatory Fields
Barreto, G. E.
2016
September
Prog Neurobiolprog Neurobiol
Targeting astrocytes in brain injuries: A translational research approach
Published
()
Optional Fields
Animals Astrocytes/metabolism/*physiology Brain Injuries/*therapy Humans Translational Medical Research/*methods
144
1
4
In the brain, the astrocentric view has increasingly changed in the past few years. The classical and old view of astrocytes as "just supporting cells" has assigned these cells some functions to help neurons maintain their homeostasis. This neuronal supportive function of astrocytes includes maintenance of ion and extracellular pH equilibrium, neuroendocrine signaling, metabolic support, clearance of glutamate and other neurotransmitters, and antioxidant protection. However, recent findings have shed some light on the new roles, some controversial though, performed by astrocytes that might change our view about the central nervous system functioning. Since astrocytes are important for neuronal survival, it is a potential approach to favor astrocytic functions in order to improve the outcome. Such translational strategies may include the use of genetically targeted proteins, and/or pharmacological therapies by administering androgens and estrogens, which have shown promising results in vitro and in vivo models. It is noteworthy that successful strategies reviewed in here shall be extrapolated to human subjects, and this is probably the next step we should move on.In the brain, the astrocentric view has increasingly changed in the past few years. The classical and old view of astrocytes as "just supporting cells" has assigned these cells some functions to help neurons maintain their homeostasis. This neuronal supportive function of astrocytes includes maintenance of ion and extracellular pH equilibrium, neuroendocrine signaling, metabolic support, clearance of glutamate and other neurotransmitters, and antioxidant protection. However, recent findings have shed some light on the new roles, some controversial though, performed by astrocytes that might change our view about the central nervous system functioning. Since astrocytes are important for neuronal survival, it is a potential approach to favor astrocytic functions in order to improve the outcome. Such translational strategies may include the use of genetically targeted proteins, and/or pharmacological therapies by administering androgens and estrogens, which have shown promising results in vitro and in vivo models. It is noteworthy that successful strategies reviewed in here shall be extrapolated to human subjects, and this is probably the next step we should move on.
1873-5118 (Electronic) 03
2016/09/24
http://www.ncbi.nlm.nih.gov/pubmed/27659056http://www.ncbi.nlm.nih.gov/pubmed/27659056
10.1016/j.pneurobio.2016.09.001
Grant Details