Peer-Reviewed Journal Details
Mandatory Fields
Shaikh R;Shirazian S;Guerin S;Sheehan E;Thompson D;Walker GM;Croker DM;
2021
March
International journal of pharmaceutics
Understanding solid-state processing of pharmaceutical cocrystals via milling: Role of tablet excipients.
Published
9 ()
Optional Fields
601
Discovery of novel cocrystal systems and improvement of their physicochemical properties dominates the current literature on cocrystals yet the required end-product formulation is rarely addressed. Drug product manufacturing includes complex API solid state processing steps such as milling, granulation, and tableting. These all require high mechanical stress which can lead to solid-state phase transformations into polymorphs and solvates, or lead to dissociation of cocrystals into their individual components. Here we measured the effect of tablet excipients on solid-state processing of a range of pharmaceutical cocrystal formulations. Our findings were rationalised using Density Functional Theory (DFT) calculations of intermolecular binding energies of cocrystal constituents and co-milling excipients. A 1:1 stoichiometric ratio of API Theophylline (THP) and co-former 4-Aminobenzoic acid (4ABA) was co-milled with five different excipients: hydroxypropylmethylcellulose (HPMC), polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), lactose, and microcrystalline cellulose (MCC). The experiments were carried out in 10 and 25 ml milling jars at 30 Hz for different milling times. Co-milled samples were characterised for formation of cocrystals and phase transformation using powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC). Our data shows that co-milling in the presence of PEG, HMPC or lactose yields purer cocrystals, supported by the calculated stronger excipient interactions for PVP and MCC. We identify a suitably-prepared THP-4ABA pharmaceutical cocrystal formulation that is stable under extended milling conditions.
1873-3476
10.1016/j.ijpharm.2021.120514
Grant Details