Peer-Reviewed Journal Details
Mandatory Fields
Asllani, M;Siebert, BA;Arenas, A;Gleeson, JP
2022
January
Chaos
Symmetry-breaking mechanism for the formation of cluster chimera patterns
Published
2 ()
Optional Fields
SYNCHRONIZATION INSTABILITY STATES
32
The emergence of order in collective dynamics is a fascinating phenomenon that characterizes many natural systems consisting of coupled entities. Synchronization is such an example where individuals, usually represented by either linear or nonlinear oscillators, can spontaneously act coherently with each other when the interactions' configuration fulfills certain conditions. However, synchronization is not always perfect, and the coexistence of coherent and incoherent oscillators, broadly known in the literature as chimera states, is also possible. Although several attempts have been made to explain how chimera states are created, their emergence, stability, and robustness remain a long-debated question. We propose an approach that aims to establish a robust mechanism through which cluster synchronization and chimera patterns originate. We first introduce a stability-breaking method where clusters of synchronized oscillators can emerge. At variance with the standard approach where synchronization arises as a collective behavior of coupled oscillators, in our model, the system initially sets on a homogeneous fixed-point regime, and, only due to a global instability principle, collective oscillations emerge. Following a combination of the network modularity and the model's parameters, one or more clusters of oscillators become incoherent within yielding a particular class of patterns that we here name cluster chimera states.& nbsp;(c) 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
MELVILLE
1054-1500
10.1063/5.0060466
Grant Details