Peer-Reviewed Journal Details
Mandatory Fields
Donnellan, EM;O'Brien, MB;Meade, KG;Fair, S
2021
December
Theriogenology
Comparison of the uterine inflammatory response to frozen-thawed sperm from high and low fertility bulls
Published
2 ()
Optional Fields
SEMINAL PLASMA INTERLEUKIN-8 ASSESSMENTS EXPRESSION IMMUNITY CELLS AI
176
26
34
Some bulls with apparently normal semen quality yield unacceptably low pregnancy rates. We hypothesised that a differential uterine immunological response to sperm from high and low fertility bulls may contribute to these differences. The experimental model used was heifer follicular phase uterine explants incubated with frozen-thawed sperm from high and low fertility bulls (3-5 replicates per experiment). Inflammatory gene expression of IL1A, IL1B, IL6, TNFA and CXCL8 were assessed by qPCR and IL1-(3 and IL-8 were quantified in explant supernatants by ELISA. Neutrophil binding affinity to sperm from high and low fertility bulls was also assessed. There was a significant up-regulation of IL1A, IL1B and TNFA from frozen-thawed sperm, irrespective of fertility status, compared to the unstimulated control. This response was confirmed at the protein level, with an increase of IL-1(3 and IL-8 protein concen-trations by 5 and 2.7 fold, respectively (P < 0.05). Although no significant differences in the inflammatory response at the gene or protein level were evident between high and low fertility bulls, more sperm from low compared to high fertility bulls bound to neutrophils (P < 0.05). Using bulls of unknown fertility, cauda epididymal sperm (CES) plus seminal plasma (SP) upregulated IL6 (P < 0.05) but there was no upregulation of any inflammatory gene expression for CES alone. Overall, this ex vivo study demonstrated an upregulation of inflammatory gene expression in the uterus in response to frozen-thawed bull sperm. While there was no difference between sperm from high and low fertility bulls, there was a greater binding affinity of low fertility sperm by neutrophils. (c) 2021 Published by Elsevier Inc.
NEW YORK
0093-691X
10.1016/j.theriogenology.2021.09.012
Grant Details